
Analysis of Hashing

The load factor l of a hash table is the fraction of
the table that is full. An empty table has load
factor 0; a full one load factor 1. The previous
result says that if the load factor of a table using
quadratic probing is no more than 0.5 then
quadratic probing is guaranteed to find a slot for
any inserted item.

If the load factor grows to more than 0.5 we need
to expand the table. Note that the hash function
depends on the table size; expanding the table
means that we need to rehash all of the data in it.

In probability theory the expected value of an
event is the sum of all of its possible values, each
multiplied times the probability it occurs. For
example, if you bet someone $5 on an event that
has probabilty p of occurring, your bet's expected
value is
5*p + (-5)*(1-p) = 10p-5. If p is 0.1, the expected
value is -4, meaning that on average you will lose
$4 each time you make such a bet. That is how
casinos make their money.

If you assume that the data in a hash table is
randomly distributed, then the probability that any
particular cell is occupied is l and the probability it
is unoccupied is 1-l. The probability that the first
location a linear probe tests is unoccupied is 1-l.
The probability that the first is occupied and the
second is free is l*(1-l). The probability that the
first two are occupied and the third is free is
l*l*(1-l). Altogether the expected number of
probes we need under the assumption of
complete randomness is

ENP = 1*(1-l) + 2*l*(1-l) + 3*l*l*(1-l) +

ENP = 1*(1-l) + 2*l*(1-l) + 3*l*l*(1-l) +
= (1-l) *[1 + 2*l + 3*l2+ 4*l3 + ...]

Let S be the portion of this in square brackets:
S = 1 + 2*l + 3*l2+ 4*l3 + ...

Then l*S = l + 2*l2 + 3*l3+ 4*l4 + ...

If we subtract these we get
S - l*S = 1 + l + l2+ l3 + ...

This is a geometric series; it sums to 1/(1-l)
So S - l*S = 1/(1-l)

S(1-l) = 1/(1-l)
S = 1/(1-l)2

ENP = (1-l) *S = 1/(1-l)

Unfortunately, our assumption of complete randomness
is at odds with either linear or quadratic probing. If cell
n is occupied, the probability that cell n+1 is also
occupied is the sum of the probability that some object
in the table has hashed to n+1, plus the probability that
a second object has hashed to n. Since the occupancy
probabilities are higher than we estimated, the
expected number of probes to find an open spot is also
higher. A complete analysis is beyond what we can do
here, but it has been shown that the expected number
of probes on an insertion with linear probing is

1+
1

1−𝜆 2

2

The expected number of probes is

1 +
1

1 − 𝜆 2

2

For example, if l is 0.5 this comes to 2.5 If l is 0.7
it is just over 6. If l increases to 0.9 the expected
number of probes increases to 50.5 On the other

hand, if l decreases from 0.5 to 0.3, the expected
number of probes decreases by only 1.

Here is a table of the expected number of probes needed to
find an open spot in a hash table with load factor l,
assuming linear probing:

λ Number of
Probes

0.1 1.11

0.2 1.28

0.3 1.52

0.4 1.89

0.5 2.50

0.6 3.62

0.7 6.06

0.8 13.00

0.9 50.5

λ Number of
Probes

0.1 1.11

0.2 1.28

0.3 1.52

0.4 1.89

0.5 2.50

0.6 3.62

0.7 6.06

0.8 13.00

0.9 50.5

Clicker Q: Think about that
table. What is a good load
factor to aim for?

A. Between 0.1 and 0.2
B. Between 0.4 and 0.5
C. Between 0.6 and 0.7
D. Over 0.8

Note that there is only slight increase in the
expected number of probes as l increases
from 0.1 to 0.4. There is little reward for
keeping the hash table mostly empty.
However, as the load factor approaches 1 the
number of probes rises very rapidly. There is
a significant penalty for letting the load factor
rise much above 0.5.

The moral of this is that while there is little payoff
for having a table that is nearly empty, the cost of
having one that is nearly full is high. If the load
factor becomes much more than 0.5 we want to
increase the size of the table, probably doubling it.

Note that changing the table size requires a
change in the hash function, so it forces us to
rehash the entire table.

No one has yet developed a similar analysis of
quadratic probing (Honors Project, anyone??) .
Simulations show that quadratic probing
reduces clustering and generally involves fewer
steps than linear probing. Since it requires very
little extra work to achieve this savings, most
people prefer quadratic probing over linear
probing.

We have been discussing the open addressing
methods for collision resolution. There is
another method called chaining.

With chaining we make the actual entries of
the hash table linked lists. When an item
hashes to index n, we add it to the linked list
stored at index n. To do a lookup for an item,
we go to the index to which it hashes and do a
linear search on the corresponding linked list.

The load factor of a hash table with chaining is
still the number of entries in the table divided
by the size of the array. Note that this can be
greater than 1. If every index of the table holds
a list of two elements, the load factor is 2.0.

Suppose we have a chained table of size 100
and it contains 150 elements. Each of these
elements will be in one of the 100 lists. If we
sum the sizes of the lists we get all 150 items.
The average size of the lists is 150/100, or 1.5.
This is exactly the load factor. In other words,
the average length of the lists with a chained
hash table is just l.

To search for an element that happens to be in the
table, we go to its list (whose index is the hash
value of the element) and do a linear search. If the
list has n elements, this search might require 1, or 2
or 3 or ... or n probes; all of these cases are equally
likely. So the average number of probes is
(1+2+3+...+n)/n = (n)(n+1)/2n = (n+1)/2. Here the
average size of the list n is our load factor l. So the
average number of probes for a successful search
in a chained hash table is (l+1)/2.

In an unsuccessful search we have to look through
the full list, so we do l probes.

Note that if l < 1 then (l+1)/2 is larger than l, so
if a chained table has load factor less than 1 then
unsuccessful searches are faster on average than
successful ones.

One advantage of chained hash tables is that
they are not nearly as sensitive to the load
factor as open addressing tables are. With
quadratic open addressing, insertions may fail if
the load factor becomes even slightly larger
than 0.5. This does not happen with linear
open addressing unless the table is completely
full, but even there searches can become very
expensive if the load factor becomes much
more than 0.7. With chained tables the
difference between searching a table with l =
2.0 and one with l=3.0 is just one extra probe.

