
Analysis of Hashing



The load factor l of a hash table is the fraction of 
the table that is full.  An empty table has load 
factor 0; a full one load factor 1.  The previous 
result says that if the load factor of a table using 
quadratic probing is no more than 0.5 then 
quadratic probing is guaranteed to find a slot for 
any inserted item.  

If the load factor grows to more than 0.5 we need 
to expand the table.  Note that the hash function 
depends on the table size; expanding the table 
means that we need to rehash all of the data in it.



In probability theory the expected value of an 
event is the sum of all of its possible values, each 
multiplied times the probability it occurs. For 
example, if you bet someone $5 on an event that 
has probabilty p of occurring, your bet's expected 
value is 
5*p + (-5)*(1-p) = 10p-5.  If p is 0.1, the expected 
value is -4, meaning that on average you will lose 
$4 each time  you make such a bet.  That is how 
casinos make their money.  



If you assume that the data in a hash table is 
randomly distributed, then the probability that any 
particular cell is occupied is l and the probability it 
is unoccupied is 1-l.  The probability that the first 
location a linear probe tests is unoccupied is 1-l.  
The probability that the first is occupied and the 
second is free is l*(1-l).   The probability that the 
first two are occupied and the third is free is 
l*l*(1-l).   Altogether the expected number of 
probes we need under the assumption of 
complete randomness is

ENP = 1*(1-l) + 2*l*(1-l) + 3*l*l*(1-l) + ....



ENP = 1*(1-l) + 2*l*(1-l) + 3*l*l*(1-l) + ....
= (1-l) *[1 + 2*l + 3*l2+ 4*l3 + ... ]

Let S be the portion of this in square brackets:
S = 1 + 2*l + 3*l2+ 4*l3 + ... 

Then l*S = l + 2*l2 + 3*l3+ 4*l4 + ... 

If we subtract these we get
S - l*S = 1 + l + l2+ l3 + ... 

This is a geometric series; it sums to 1/(1-l)
So S - l*S = 1/(1-l)

S(1-l) = 1/(1-l)
S = 1/(1-l)2

ENP = (1-l) *S = 1/(1-l)



Unfortunately, our assumption of complete randomness 
is at odds with either linear or quadratic probing.  If cell 
n is occupied, the probability that cell n+1 is also 
occupied is the sum of the probability that some object 
in the table has hashed to n+1, plus the probability that 
a second object has hashed to n.   Since the occupancy 
probabilities are higher than we estimated, the 
expected number of probes to find an open spot is also 
higher. A complete analysis is beyond what we can do 
here, but it has been shown that the expected number 
of probes on an insertion with linear probing is
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For example, if l is 0.5 this comes to 2.5   If l is 0.7 
it is just over 6.  If l increases to 0.9 the expected 
number of probes increases to 50.5  On the other 

hand, if l decreases from 0.5 to 0.3, the expected 
number of probes decreases by only 1.



Here is a table of the expected number of probes needed to 
find an open spot in a hash table with load factor l, 
assuming linear probing:

λ Number of 
Probes

0.1 1.11

0.2 1.28

0.3 1.52

0.4 1.89

0.5 2.50

0.6 3.62

0.7 6.06

0.8 13.00

0.9 50.5
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Clicker Q:  Think about that 
table.  What is a good load 
factor to aim for?

A. Between 0.1 and 0.2
B. Between 0.4 and 0.5
C. Between 0.6 and 0.7
D. Over 0.8



Note that there is only slight increase in the 
expected number of probes as l increases 
from 0.1 to 0.4. There is little reward for 
keeping the hash table mostly empty.  
However, as the load factor approaches 1 the 
number of probes rises very rapidly.  There is 
a significant penalty for letting the load factor 
rise much above 0.5.



The moral of this is that while there is little payoff 
for having a table that is nearly empty, the cost of 
having one that is nearly full is high.  If the load 
factor becomes much more  than 0.5 we want to 
increase the size of the table, probably doubling it.

Note that changing the table size requires a 
change in the hash function, so it forces us to 
rehash the entire table.



No one has yet developed a similar analysis of 
quadratic probing  (Honors Project, anyone??) .  
Simulations show that quadratic probing 
reduces clustering and generally involves fewer 
steps than linear probing.  Since it requires very 
little extra work to achieve this savings, most 
people prefer quadratic probing over linear 
probing.  



We have been discussing the open addressing 
methods for collision resolution.  There is 
another method called chaining.  

With chaining we make the actual entries of 
the hash table linked lists.  When an item 
hashes to index n, we add it to the linked list 
stored at index n.  To do a lookup for an item, 
we go to the index to which it hashes and do a 
linear search on the corresponding linked list.



The load factor of a hash table with chaining is 
still the number of entries in the table divided 
by the size of the array.  Note that this can be 
greater than 1.  If every index of the table holds 
a list of two elements, the load factor is 2.0.



Suppose we have a chained table of size 100 
and it contains 150 elements.  Each of these 
elements will be in one of the 100 lists.  If we 
sum the sizes of the lists we get all 150 items.  
The average size of the lists is 150/100, or 1.5.  
This is exactly the load factor.  In other words, 
the average length of the lists with a chained 
hash table is just l.  



To search for an element that happens to be in the 
table, we go to its list (whose index is the hash 
value of the element) and do a linear search.  If the 
list has n elements, this search might require 1, or 2 
or 3 or ... or n probes; all of these cases are equally 
likely.  So the average number of probes is 
(1+2+3+...+n)/n = (n)(n+1)/2n = (n+1)/2.  Here the 
average size of the list n is our load factor l.   So the 
average number of probes for a successful  search 
in a chained hash table is (l+1)/2.  

In an unsuccessful search we have to look through 
the full list, so we do l probes.



Note that if l < 1 then (l+1)/2 is larger than l, so 
if a chained table has load factor less than 1 then 
unsuccessful searches are faster on average than 
successful ones.



One advantage of chained hash tables is that 
they are not nearly as sensitive to the load 
factor as open addressing tables are.  With 
quadratic open addressing, insertions may fail if 
the load factor becomes even slightly larger 
than 0.5.  This does not happen with linear 
open addressing unless the table is completely 
full, but even there searches can become very 
expensive if the load factor becomes much 
more than 0.7.  With chained tables the 
difference between searching a table with l = 
2.0 and one with l=3.0 is just one extra probe.


